

 TeraByte Scripting Language
 Reference

TeraByte Unlimited
Las Vegas, Nevada, USA
http://www.terabyteunlimited.com

Copyright © 2007-2022 TeraByte, Inc. All Rights Reserved
 Revision: 2022-02-22

http://www.terabyteunlimited.com/

TBScript Reference Page 1 of 43

TeraByte Scripting Language (TBScript) Language Reference

Overview

TBScript is a simple yet flexible scripting language, which allows you to automate many different types of tasks.
TBScript is similar to the BASIC language and users familiar with BASIC should quickly become productive using
TBScript.

TBScript is loosely typed in that variables do not need to be declared and the same variable can store data of any
of the supported types. In addition, it is not case sensitive. Variables and symbols can use any combination of
upper and lower case characters.

Structure
A TBScript file consists of one or more subroutines. All scripts must define one subroutine called MAIN. Execution
starts at this subroutine. Any subroutine can return a value using the RETURN keyword.

// Here is a sample script.
// Text that follows // or ; are comments and
// are ignored by the interpreter.
// Execution begins at the following subroutine
sub main()
 printl(double(5))
end sub

// Here's another subroutine. It returns the
// argument value times two
sub double(val)
 return val * 2;
end sub

This example defines two subroutines, main and double. Double accepts an argument and returns that value times
two. Main passes 5 to double and prints the result.

Subroutines are called by specifying the name of the subroutine followed by parentheses. If the subroutine takes
arguments, they can be specified between the parentheses separated by commas. Subroutine calls may be
included in expressions or assigned to a variable, or even used as arguments to other subroutines.

Variables
As stated earlier, variables in TBScript are loosely typed. Any variable can contain a 64-bit integer (32 bit for DOS
real mode), floating point, or a string value. In addition, a variable can also be contain sub variables using the “dot”
syntax or elements using the “bracket” syntax.

// The following line makes a an integer value
a = 452
// This makes it a floating point-value
a = 5.2
// And this one makes it a string
a = "This is a test!"
// These lines creates sub variables of a
a.i = 452
a.f = 5.2
a.s = "This is a test"
// This creates elements of the variable a
a[1] = 452
a[2] = 5.2

TBScript Reference Page 2 of 43

Note that any of the statements above will create the named variable if it has not already been created. This is also
true when a variable is read.

NOTE: Variables are unique to the current subroutine. Variables in different subroutines with the same name are
different variables.

Constants
Constants are fixed values. Here are a few examples of valid constants.

// This is an integer constant
55
// Here is a floating-point constant
75.2
// Here is a string constant
"This is a test"
// This is an integer constant in hexadecimal (leading 0x)
0x1F
// This is an integer constant in octal (leading 0)
010

String constants can contain special escape sequences to create unique characters. A caret (^) initiates an escape
sequence. Here is a list of the escape sequences that are supported.

Escape Character Meaning
“^a” Bell (alert)
“^b” Backspace
“^f” Form feed
“^n” New line
“^r” Carriage return
“^t” Tab
“^’” Single quote
“^”” Double quote
“^^” A single caret character

You can also specify characters by specifying the ASCII value of the character using either of the following two
formats.

“^xNN” Specifies an ASCII character where NN are two hexadecimal (base 16) digits.
“^NNN” Specifies an ASCII character where NNN are three octal (base 8) digits.

Operators
Operators are used in expressions to modify or compare subexpressions. TBScript supports arbitrarily complex
expressions and all of the following operators.

Unary operators: + Positive (the default)
 - Negative

Assignment operator: = Assigns a value to a variable

Concatenation operator: # Appends one string to another

Math operators: + Adds one value to another
 - Subtracts one value from another
 * Multiplies one value by another
 / Divides one value by another
 % Divides one value by another and returns the remainder

Bitwise operators: & Bitwise AND
 | Bitwise OR

TBScript Reference Page 3 of 43

 ^ Bitwise XOR

Comparison operators: = Equal
 <> Not equal
 < Less than
 > Greater then
 <= Less than or equal
 >= Greater than or equal

Logical operators: AND If both expressions are true
 OR If either expression is true

Note: The concatenation, addition, subtraction, and bitwise operators all operate at the same precedence from left
to right. (e.g. "Answer is:" # 3 & 3 results in 0, "Answer is:" # (3 & 3) results in “Answer is:3”)

Here are some examples:
A = 5 * ((2 + 3) – 1)
A = (5+3) & (7-2)
A = "This is " # "a test."
IF A > 0 AND B > 0 THEN
 // Both tests are true
END IF

TBScript Reference Page 4 of 43

Reference

This section provides a complete reference for all TBScript keywords and built-in subroutines in alphabetical order.

NOTE: Terms in the Usage section of the reference enclosed in square brackets ([]) indicate that the term is
optional.

ARG, ARGC Subroutines
Usage:
a = ARG(n)
n = ARGC()

Description:
The ARG and ARGC subroutine are used to access any arguments that were passed on the command line (when
the script was started). ARGC returns the number of arguments. ARG() returns the argument indicated by n, which
can be in the range 1 through the value returned by ARGC.

In addition to the arguments described above, the ARG subroutine returns the fully qualified path of the script file
when n = 0.

Example:
sub main()
 printl("Script name = ", arg(0))
 for i = 1 to argc()
 printl("Arg ", i, " = ", arg(i))
 next
end sub

ASC Subroutine
Usage:
n = ASC(s)

Description:
The ASC subroutine returns the ASCII value of the first character in the string s.

Example:
sub main()
 // Print ASCII value of "A"
 printl(ASC("A"))
end sub

BINARY Subroutine
Usage:
newvariant = BINARY(variant [[[[, type], startoffset], length], binvartoupdate])

Description:
This subroutine sets or extracts binary data types (used for binary file operations or uefi variables). When variant is
a binary data type and binvartoupdate is not provided then this subroutine extracts data from variant to create a
new variable of type. When variant is not a binary data type or binvartoupdate is provided then this subroutine
returns a new binary data type. When not provided, optional parameters are assumed to be zero. The values for
type are as follows: 0=String, 1=Hex String, 2=Wide String, 3=Numeric, 4=Binary, 5=Narrow String. The
startoffset is the zero based starting offset to the data to extract from or set in newvariant. The length specifies the
number of bytes of data to extract from or set in newvariant. When the length is zero it is assumed to be the same
length as variant. When binvartoupdate is provided it will be used as the basis of newvariant to allow updating an
existing binary variable. This subroutine was added in TBSVER 3 and enhanced with type, startoffset, length, and
binvartoupdate in TBSVER 9, Narrow String in TBSVER 14.

TBScript Reference Page 5 of 43

Example:
sub main()
 // Note: It’s recommended to use type 2 or 5 to know the string type.
 // non-Unicode versions return narrow strings
 bindata=BINARY("STRING") // 53 54 52 49 4E 47
 // Unicode versions return wide strings
 bindata=BINARY("STRING") // 53 00 54 00 52 00 49 00 4E 00 47 00
 bindata=BINARY(0, 3, 0, 1) // 00
 bindata=bindata # bindata // 00 00
 bindata=BINARY("3031323334", 1) // 30 31 32 33 34
 bindata=BINARY("353637", 1, 5, 0, bindata) // 30 31 32 33 34 35 36 37
 word=BINARY(bindata, 3, 0, 2) // 0x3130
 bindata=BINARY("55AA", 1, 1, 3) // 00 55 AA 00
 printl(len(bindata)) // 4
end sub

BREAK Subroutine
Usage:
n = BREAK(n)

Description:
Enable (n=1) or disable (n=0) the ability to break out of the running of the script by use of the CTRL-C or CTRL-
BREAK key on the keyboard. The return value is the break value prior to setting the new value.

Example:
sub main()
 // Disable CTRL-C and CTRL-Break
 BREAK(0)
end sub

CHDIR Subroutine
Usage:
r = CHDIR(path [, changedrive])

Description:
Changes the current directory to the given path. This subroutine returns zero on success or a non-zero failure
code. changedrive was added in TBSVer 12 and if provided, the drive is also changed if specified in the path.

CHR Subroutine
Usage:
s = CHR(n)

Description:
The CHR subroutine returns a string with a single character, which has the ASCII value of the number n.

Example:
sub main()
 // Print "A"
 printl(CHR(65))
end sub

TBScript Reference Page 6 of 43

CLS Subroutine
Usage:
CLS()

Description:
Clears the screen and positions the text cursor at the top, left corner of the screen.

CONCTL Subroutine
Usage: Availability:
r = CONCTL("command") Version 15 (Windows)

Description:
Allows moving, hiding, and getting the position of the console window. command can be one of the following:

show=n – Hide/show console window. Values for n are: 0=hide, 1=show
pos=x,y,w,h – Position console window at x, y with width w and height h.
query – Get position, size, and visible state of console window. Returns the following members:
 .x – horizontal position
 .y – vertical position
 .width – width of window
 .height – height of window
 .shown – visible state (0=hidden, 1=visible)

Note that the size and/or position of the console window may be adjusted to keep the window inside the screen
area when it’s positioned. If necessary, use the WinGetMonitors subroutine to get the screen area for the
monitor(s).

Return value is true/false (1/0) for success/failure of specified command.

Example:
sub main()
 conctl("show=0") // hide console window
 conctl("pos=100,10,1000,550") // move and resize console window
 con = conctl("query") // get console info
 printl("Console position: " # con.x # ", " # con.y)
 printl("Console size: " # con.width # " x " # con.height)
 printl("Console visible: " # con.shown)
end sub

CONST Keyword
Usage:
CONST name = value

Description:
Defines a constant symbol.

Constants are similar to variables except a) They are defined in your script outside of any subroutines, and b) Their
value cannot be changed. Constants are useful, for example, when you write a script that uses a value in several
places, but you want to be able to easily change that value at one location.

There are also default constants: TBSVER contains the version string of the script engine; TBSENV contains
"DOS", "LINUX", "WINDOWS", or “UEFI” depending on which type of environment the script is running on;
TBSENVCH contains “UNICODE” if Windows Unicode version; TBSAPPPATH contains the path name to the folder
containing the main application.

Example:
const A = 100

TBScript Reference Page 7 of 43

sub main()
 printl("The value of A is ", A)
end sub

DIRECTVIDEO Subroutine
Usage:
DIRECTVIDEO([n])

Description:
This subroutine is used to set the DOS environment to either write directly to video memory or to use the BIOS. By
default direct video mode is enabled as it’s much faster. If you have a need to use BIOS video then use this
subroutine to turn off direct video mode. This subroutine was added in TBSVER 4.

Example:
sub main()
 directvideo(0) // turn off
 directvideo() // turn on
 directvideo(1) // turn on
end sub

EXEC Subroutine
Usage:
EXEC(s[,f])

Description:
Executes a shell command. The string s can be any valid shell command. Returns the return code (errorlevel) of
the command. The optional f parameter determines the format used to pass the parameters to external programs.
It was added to maintain backwards compatibility. By default (or zero) the parameters are parsed by exec and then
passed to the program, otherwise if set to one (1) the raw non-parsed parameters are passed.

Example:
sub main()
 exec("program ^"^"param one^"^"" ---param2) // old format
 exec("program ^"param one^" --param2", 1) // new format is easier
 exec("script.tbs")
 exec("shellcommand")
end sub

ExitLoop Keyword
Usage:
ExitLoop

Description:
Exits out of a While/Wend or For/Next loop.

Example:
sub main()
 // similar to a repeat/until loop
 while 1
 keyval=GetKey()
 printl("You entered key code ", keyval)
 if keyval=asc("q") then
 exitloop
 end if
 wend

TBScript Reference Page 8 of 43

end sub

EXT Subroutine
Usage:
r = EXT(s [, capture [, guiprogvar [, guitextvar]]])

Description:
Executes script extensions that may exist in a product. An error code is returned if there is one. The optional
capture parameter (added in version 15) can be true (1) to have the function return the output from the command;
otherwise false (0) is presumed. The return variable has the captured output in the .extcap member (there is a 64K
character limit). If a “pause” option is used the output won’t be captured because the command will be interactive
(e.g. “dir /p”, “type filename /p”, etc.). The Windows version 16 adds the guiprogvar and guitextvar parameters for
use by commands that provide progress feedback to also update the GUI as well.

Example:
sub main()
 ext("extcmd param1 param2")

 // read value from INI file
 r = ext("list ini settings.ini options username", 1)
 p = instr(r.extcap, "^n")
 if (p>1) then
 val = left(r.extcap, p-1)
 else
 val = r.extcap
 end if
end sub

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 9 of 43

FINDFIRST, FINDNEXT Subroutines
Usage:
f = FINDFIRST([s])
f = FINDNEXT(f)

Description:
Use these subroutines to iterate through system files.
The optional argument to FINDFIRST indicates the filespec used to filter the files returned. If the argument is
omitted, “*.*” is used.

The value returned by FINDFIRST can then be passed to FINDNEXT repeatedly to iterate through all the files
matching the filespec.

The value returned is the name of the file. Both subroutines return an empty filename (“”) when there are no more
matching files. The returned value has several members that contain additional information about the current file.
These members are NAME, DATE, TIME, SIZE, ATTRIB, CDATE, CTIME, ADATE, ATIME, MODE and SFN (if
different than NAME). TBSVER 5 adds sortable date and time values of DATETIME, CDATETIME, ADATETIME.

In order to close the internal find handle you should empty the variable holding the returned value when you abort
the find operation before an empty filename(“”) is obtained. (e.g. f=" ")

Example:
sub main()
 f = findfirst("*.*")
 while len(f) > 0
 c = c + 1
 print(" ", f.date)
 print(" ", f.time)
 print(" ", f.size)
 print(" ", f.attrib)
 printl(f.name)
 f = findnext(f)
 wend
 printl(c, " file(s)")
end sub

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 10 of 43

FOR..TO..NEXT Keywords
Usage:
FOR var = start TO end
 statements
NEXT

Description:
Use a FOR loop to execute a block of statements a specified number of times.

Initially, var is set to the value specified by start. Then, each time the block of statements are executed, var is
incremented. When var is greater than end, execution continues on the next statement after the NEXT keyword. If
end is less than start, the block of statements is never executed.

NOTE: The start and end values are evaluated only once and the resulting values are cached. So, for example, if
the loop modifies values used in the end expression, this will not alter the number of times the block of statements
is executed.

NOTE 2: Unlike the BASIC language, the name of the variable is not required nor allowed after the NEXT
statement.

Example:
sub main()
 for i = 1 to 10
 printl("This is line ", i)
 next
end sub

GETCWD Subroutine
Usage:
d=GETCWD([d:path])

Description:
Gets the current working directory of the given drive in path or the current drive if no drive letter provided. This
function returns an empty string on error.

GETDATE Subroutine
Usage:
s = GETDATE()

Description:
The GETDATE subroutine returns the current date as a string.

Example:
sub main()
 // Extract components of current date
 date = getdate()
 month = mid(date, 1, 2)
 day = mid(date, 4, 2)
 year = mid(date, 7, 4)
end sub

TBScript Reference Page 11 of 43

GETDATETIME Subroutine
Usage:
s = GETDATETIME([datetimevalue])

Description:
The GETDATETIME subroutine returns a date and time string value based on the current locale setting. If
datetimevalue is not provided then the current date and time are used. The datetimevalue parameter is a numeric
value based on either Unix time or Windows file time. Large values are assumed to be Windows file time, smaller
values Unix time. NOTE: The Right(TBSVER,3)=”x16” version of TBScript does not support the datetimevalue
parameter and will return an empty string.

Example:
sub main()
 // Extract components of current date/time
 datetime = getdatetime()
 month = mid(datetime, 1, 2)
 day = mid(datetime, 4, 2)
 year = mid(datetime, 7, 4)
 hour = mid(datetime, 12, 2)
 min = mid(datetime, 15, 2)
 sec = mid(datetime, 18, 2)
end sub

GETDRIVE Subroutine
Usage:
d=GETDRIVE()

Description:
Returns the current drive letter followed by a colon (e.g. "A:") or empty string if no current drive.

GETENV Subroutine
Usage:
s = GETENV(s)

Description:
Returns the value of the specified environment variable.

GETKEY Subroutine
Usage:
n = GETKEY([prompt [, timeout]])

Description:
The GETKEY subroutine returns the value of the next key pressed by the user. prompt is an optional prompt string
that is displayed before waiting for the key press.

timeout is an optional argument that specifies a timeout period, in seconds. If the user does not press any key
within the specified number of seconds, the GETKEY subroutine returns a value of 0 without waiting for a
keystroke. If the timeout argument is omitted or is 0, the GETKEY subroutine waits for the next keystroke
regardless of how long it takes. Note that the timeout argument can be specified only if the prompt argument is
specified; however, prompt may be an empty string (“”).

TBScript Reference Page 12 of 43

GETSTR Subroutine
Usage:
s = GETSTR([prompt [, maxchars]])

Description:
Returns a string entered by the user. prompt is an optional prompt that is displayed before waiting for the user to
enter a string. In addition, maxchars is an optional number that specifies the maximum length of the string that the
user can enter.

NOTE: If maxchars is specified, the prompt argument must be included. If TXINIT is active then a newline is not
automatically output after pressing enter (except under Windows which always outputs a newline).

GETTIME Subroutine
Usage:
s = GETTIME()

Description:
The GETTIME subroutine returns the current time as a string.

Example:
sub main()
 // Extract components of current time
 time = gettime()
 hour = mid(time, 1, 2)
 min = mid(time, 4, 2)
 sec = mid(time, 7, 2)
end sub

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 13 of 43

GETSYSINFO Subroutine
Usage:
si = GETSYSINFO()

Description:
Returns information about the current system. The variable contains the following members: BIOSDate,
BIOSVendor, BIOSVersion, SysFamily, SysManufacturer, SysProductName, SysSKU, SysVersion, SysUUID.
TBSVER 6 adds two additional members: BIOSFeatures1, BIOSFeatures2. TBSVER 7 adds CPUCount. For each
CPUCount an array (1 based) is provided as CPU[n] with the following members: ID, Cores, CoresEnabled,
Threads, and Features. Note that the Core and Feature information may not be reported by the system; however
the Threads member is valid if Cores is non-zero. The ID contains the contents of cpuid leaf 1 EAX (low) and EDX
(high)values.

BIOSFeatures1 BIOSFeatures2 CPUFeatures
Bit Meaning if Set Bit Meaning if Set Bit Meaning if Set
4 ISA supported 0 ACPI supported 2 64-bit capable
5 MCA supported 1 USB legacy supported 3 Multi-Core
6 EISA supported 2 AGP supported 4 Hardware thread
7 PCI supported 3 I2O boot supported 5 Execute protection
8 PC Card (PCMCIA) supported 4 LS-120 boot supported 6 Enhanced virtualization
9 Plug and Play supported 5 ATAPI ZIP supported 7 Power/Performance control

10 APM supported 6 1394 boot supported
11 BIOS is upgradable (Flash) 7 Smart battery supported
12 BIOS shadowing allowed 8 BBS is supported
13 VL-VESA supported 9 Fn key network boot

supported

14 ESCD available 10 Targeted content distribution
15 Boot from CD supported 11 UEFI supported
16 Selectable boot is supported 12 Virtual Machine
17 BIOS ROM is socketed
18 Boot from PC Card (PCMCIA)

supported

19 EDD supported

Example:
sub main()

 si=getsysinfo()
 if (si) then
 printl("BIOS Date: ", si.biosdate)
 printl("BIOS Vendor: ", si.biosvendor)
 printl("BIOS Version: ", si.biosversion)
 printl("System Family: ", si.sysfamily)
 printl("System Manufacturer: ", si.sysmanufacturer)
 printl("System Product Name: ", si.sysproductname)
 printl("System SKU: ", si.syssku)
 printl("System Version: ", si.sysversion)
 printl("System UUID: ", si.sysuuid)
 else
 printl("Unable to obtain the system information")
 end if

end sub

TBScript Reference Page 14 of 43

GETUEFIVAR Subroutine
Usage:
binvar=UEFIGETVAR(varname, namespaceguid)

Description:
Retrieve a UEFI firmware variable (variables are case sensitive) and its attributes in binvar.attributes. This
subroutine is only available when the system booted using UEFI. In linux, the efivarfs must be mounted at
/sys/firmware/efi/efivars. The linux command to mount is: mount -t efivarfs none /sys/firmware/efi/efivars. On failure
the returned binvar is zero bytes in length and contains a member binvar.errno to indicate the error code.

Example:
sub main()
 t = getuefivar("Timeout", "{8BE4DF61-93CA-11D2-AA0D-00E098032B8C}")
 if (len(t) > 0) then
 printl("Boot Timeout = ", t)
 else
 printl("Unable to retrieve Boot Timeout. Error:", t.errno)
 t = "" // remove variable
 end if
end sub

GLOBAL Keyword
Usage:
GLOBAL name = value

Description:
Defines a global variable.

Global variables are similar to regular variables except they are defined in your script outside of any subroutines.

Example:
global A = 100

sub main()
 printl("The value of A is ", A)
 ChangeA()
 printl("The value of A is ", A)
end sub

sub ChangeA()
 A=200
End sub

GOTO Keyword
Usage:
GOTO label

Description:
Use the GOTO keyword to jump to another line in the current script. A GOTO line is identified by a symbol followed
by a colon (:). The GOTO statement and the label being jumped to must be within the same subroutine.

NOTE: Caution must be taken when jumping into or out of a loop such as a FOR..NEXT or WHILE..WEND loop.
For example, if you jumped into a FOR..NEXT loop, execution would continue until the NEXT is encountered, which
would produce a “NEXT without FOR” error because the FOR keyword was skipped.

Example:
sub main()

TBScript Reference Page 15 of 43

 printl("This line gets executed")
 goto jump
 printl("This line does not get executed")
jump:
 printl("This line also gets executed")
end sub

GUIButton Subroutine
Usage: Availability:
s = GUIButton(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add a button to a dialog. The GUIButton variadic (…) parameters are listed below for quick reference. Additional
options, details, and examples can be found in Windows GUI Controls: Styles & Images Reference.

Default, CmdLink, DefCmdLink, Split, DefSplit, Flat, Multiline, Push, TxLeft, TxCenter, TxRight, TxBottom, TxTop, TxVCenter, Right,
Image, SetImage={metadata}image_file

Example:
sub main()
 …
 button=GUIButton(dialog, 10, 10, 60, 24, "OK", "SetImage={16}myicon.ico")
 …
end sub

GUICheckBox Subroutine
Usage: Availability:
s = GUICheckBox(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add a checkbox to a dialog. The GUICheckBox variadic (…) parameters are listed below for quick reference.
Additional options, details, and examples can be found in Windows GUI Controls: Styles & Images Reference.

3State

Example:
sub main()
 …
 checkbox=GUICheckBox(dialog, 10, 10, 150, 24, "CheckBox1")
 GUISetValue(checkbox, 1) // check
 …
end sub

GUICombo Subroutine
Usage: Availability:
s = GUICombo(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add a combo control (List and Input combined or dropdown list) to a dialog. The height value is used to determine
the size of the dropdown menu when open. The GUICombo variadic (…) parameters are listed below for quick
reference. Additional options, details, and examples can be found in Windows GUI Controls: Styles & Images
Reference.

Simple, Sort, Upper, Lower, Dropdown, DropdownList

Example:
sub main()

TBScript Reference Page 16 of 43

 …
 combo=GUICombo(dialog, 10, 10, 200, 150, "Combo", "dropdown")
 GUIInsertItem(combo, "Item 1", 0)
 GUIInsertItem(combo, "Item 2", 1)
 …
end sub

GUIDialog Subroutine
Usage: Availability:
s = GUIDialog(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Create a dialog on which to place controls. The GUIDialog variadic (…) parameters are listed below for quick
reference. Additional options, details, and examples can be found in Windows GUI Controls: Styles & Images
Reference.

Align-Center

The tab order of the controls in the dialog is the order in which they were created. Each control created for a dialog
must be assigned to a variable (will be ignored, otherwise). While dialog and control variables are cleaned up when
they go out of scope, it’s recommended to use the unset keyword to clear the variables when no longer needed.
There is a maximum of 10 dialogs at one time, each with a maximum of 200 controls.

Multiple dialog windows can be created and controlled either in the main event loop or their own even loop. Note
that you will need to disable the “parent” dialog (or certain controls in it) if you don’t want them active when a “child”
dialog is open and then reenable the “parent” dialog (or disabled controls) when the “child” dialog closes.

See the GUIEventWait and GUIGetEvent subroutines for additional examples.

Example:
sub main()
 …
 // create dialog
 dialog=GUIDialog(10, 10, 600, 400, "My Dialog", "align-center")
 …
 // event loop
 …
 // done with controls, clear them
 unset dialog
 …
end sub

GUIEnable Subroutine
Usage: Availability:
GUIEnable(dialog_or_control, true_false) Version 15 (Windows)

Description:
Enables or disables the specified dialog or control (0=disable, 1=enable).

Example:
sub main()
 …
 button=GUIButton(dialog, 10, 10, 60, 24, "OK", "default")
 GUIEnable(button, 0) // disable button
 …
end sub

TBScript Reference Page 17 of 43

GUIEventWait Subroutine
Usage: Availability:
r = GUIEventWait(dialog [, milliseconds]) Version 15 (Windows)

Description:
Wait for an event from the dialog or any of its controls. Optionally, specify a timeout period in milliseconds for the
subroutine to return if no event has occurred.
Return values: -1 = error, 0 = timeout, 1 = event occurred.

Example:
sub main()
 dialog=GUIDialog(10, 10, 600, 400, "My Dialog", "align-center")
 button=GUIButton(dialog, 10, 10, 60, 24, "OK", "default")

 // event loop
 while 1
 event=GUIEventWait(dialog, 5000)
 if event=0 then
 printl("timed out")
 elseif event=1 then
 // process dialog events
 dlgevent=GUIGetEvent(dialog)
 if (dlgevent & 0x8000) then
 exitloop // close requested
 end if
 // process control events
 if (GUIGetEvent(button) & 1) then
 exitloop
 endif
 else
 printl("error on wait")
 exitloop
 end if
 wend

 unset dialog
 unset button

end sub

GUIGetEvent Subroutine
Usage: Availability:
bits = GUIGetEvent(dialog_or_control) Version 15 (Windows)

Description:
Returns events that have occurred for a given dialog or control since the last time the subroutine was called on it.
The return value is bit oriented and consists of:

0x0001 – Clicked
0x0002 – Double Clicked
0x0004 – Changed (not sent for checkbox and radiobutton controls)
0x0008 – Pushed
0x0010 – Unpushed
0x0020 – Got Focus
0x0040 – Lost Focus
0x0080 – Dropdown selected (e.g., on split button)
0x0100 – Dialog: Menu item selected

TBScript Reference Page 18 of 43

0x4000 – Dialog: Context menu requested
0x8000 – Dialog: Close request

Note that events may come in together (e.g., 0x21 – Got Focus & Clicked) or separately (e.g., 0x1 Clicked followed
by 0x2 Double-clicked).

Example:
sub main()
 // inside event loop
 …
 event=GUIGetEvent(dialog)
 if (event & 0x8000) then
 printl("Close Requested")
 end if

 // context menu requested
 if (event & 0x4000) then
 ctrlid = GUIGetValue(dialog) // get ID of control requesting menu
 if (ctrlid = mylistview) then
 GUIMenu(dialog, -1, -1, 0, "{10}Item A|{11}Item B|{12}Item C")
 end if
 end if

 // process menu items
 if (event & 0x100) then
 menuid = GUIGetValue(dialog) // get ID value of selected menu item
 if (menuid = 20) then
 // process "Item A" from split button menu
 end if
 end if

 // regular button
 if (GUIGetEvent(button) & 1) then
 printl("Button Clicked")
 end if

 // split button
 ev = GUIGetEvent(sbutton)
 if (ev & 1) then
 printl("Button part of split button clicked")
 elseif (ev & 0x80) then
 printl("Dropdown part of split button clicked")
 // display context menu
 p=GUIPos(sbutton) // next line should all be on one line
 GUIMenu(dialog, p.x+p.width-10, p.y+p.height-10, 0,
 "{20}Item A|{21}Item B")
 end if
 …
end sub

GUIGetText Subroutine
Usage: Availability:
text = GUIGetText(dialog_or_control) Version 15 (Windows)

Description:

TBScript Reference Page 19 of 43

Retrieve the text for a dialog or control that supports text. For DateTime the format used is “YYYY-MM-DD
hh:mm:ss”. For List control, returns view style (icon, smallicon, list, details).

Example:
sub main()
 …
 text=GUIGetText(input)
 printl("You entered:" # text)
 …
end sub

GUIGetValue Subroutine
Usage: Availability:
value = GUIGetValue(dialog_or_control [, which]) Version 15 (Windows)

Description:
Returns the values for a dialog or control that supports values. The which parameter is used for a List or Tree
control to indicate which data to return (“checked”, “selected”, or “state=n” items). The value returned depends on
the control type as follows:

 Dialog: Return value depends on last event: Menu selection returns ID of menu item selected. Context

menu requested returns the ID of the dialog or control requesting the menu.

 DateTime: FILETIME value (64-bit number).
 Input: Max characters allowed.
 Checkbox: -1=Indeterminate, 0=Not Checked, 1=Checked
 RadioButton: -1=Indeterminate, 0=Not Checked, 1=Checked
 Progress: Current value (0-100).
 Combo: The index of the currently selected item.
 List/Tree: The number of member array items returned. The individual values for a List/Tree are returned in

a member array. For example, if it returns 2 then there will be a value.[1] and value.[2] to indicate
which item values are checked, selected, or match the state.

Example:
sub main()
 …
 r=GUIGetValue(checklist, "checked")
 printl("Checked Identifiers:")
 for i=1 to r
 printl(r.[i])
 next
 …
 r=GUIGetValue(statelist, "state=4")
 printl("Items set to state 4:")
 for i=1 to r
 printl(r.[i])
 next
 …
end sub

GUIGroupBox Subroutine
Usage: Availability:
s = GUIGroupBox(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add a group box to a dialog. GUIGroupBox does not have any control-specific variadic (…) parameters. General
options, details, and examples can be found in Windows GUI Controls: Styles & Images Reference.

TBScript Reference Page 20 of 43

Example:
sub main()
 …
 groupbox=GUIGroupBox(dialog, 10, 10, 100, 80, "Group Box")
 …
end sub

GUIInput Subroutine
Usage: Availability:
s = GUIInput(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add an input box (edit control) to a dialog. The GUIInput variadic (…) parameters are listed below for quick
reference. Additional options, details, and examples can be found in Windows GUI Controls: Styles & Images
Reference.

ReadOnly, Password, Multiline, Lower, Upper, Number, TxLeft, TxCenter, TxRight

Example:
sub main()
 …
 input=GUIInput(dialog,10,10,200,20,"Text","bgcolor=0","fgcolor=0xFFFFFF")
 …
end sub

GUIInsertItem Subroutine
Usage: Availability:
GUIInsertItem(control, text, identifier [, iconidx [, after_identifier [, parent_identifier]]]) Version 15 (Windows)

Description:
Insert an item into a List, Tree or Combo control.

For a List in detail mode, the text parameter can specify multiple column’s text separated by a newline character
(^n). The iconidx parameter can specify multiple column icon indexes separated by a newline character (^n). To
skip an icon for a column (first column can’t be skipped), use a space between the separators (e.g., to skip the
second column: "1^n ^n3" or "1| |3").

For Tree, the iconidx parameter can have two values separated by a newline character (^n) to indicate the image
and selected image respectively.

For List/Tree controls the identifier must be 1 or greater; for a Combo control the identifier is the zero-based index
to insert at (-1 to add to end).

Note: In addition to the newline character (^n), a vertical bar (|) can be used as the separator for the GUI based
subroutines if enabled with the GUIVertBarSep subroutine.

Example:
sub main()
 …
 GUIVertBarSep(1)
 GUIInsertItem(list, "Item1_A|Item1_B", 1);
 GUIInsertItem(list, "Item3_A|Item3_B", 3, 1);
 GUIInsertItem(list, "Item2_A|Item2_B", 2, "2|2", 1);

 GUIInsertItem(tree, "Root Item", 1, 0)
 GUIInsertItem(tree, "Root Child", 2, "1|0", 0, 1)

TBScript Reference Page 21 of 43

 GUIInsertItem(tree, "Child Child", 3, 1, 0, 2)
 …
end sub

GUIList Subroutine
Usage: Availability:
s = GUIList(dialog, x, y, width, height, title, headers, images, …) Version 15 (Windows)

Description:
Add a list control to a dialog. Columns can be created by passing the headers string with optional metadata prefix.
The metadata format is {column_width specifiers}. The specifiers control the column’s alignment, data type for
sorting, and default sort. The alignment options available are L to left justify, R to right justify, or C to center. The
data type options are U for unsigned integer, I for a signed integer. The sort options are > to sort from A to Z or <
to sort from Z to A. Separate multiple headers in the string with a newline character (^n). The images follow the
format of the ImageList found in Windows GUI Controls: Styles & Images Reference. The GUIList variadic (…)
parameters are listed below for quick reference. Additional options, details, and examples can be found in Windows
GUI Controls: Styles & Images Reference.

List View styles: Icon, SmallIcon, List, Details

Left, Top, AutoArrange, Sort, SortRev, SingleSel, KeepSel, NoSortHeader, NoHeader, AutoAutoArrange, AutoCheckSelect,
AutoSizeColumns, BorderSelect, CheckBoxes, ColumnSnapPoints, DoubleBuffer, FlatSB, FullRowSelect, GridLines, HideLabels,
LabelTip, SimpleSelect, SnapToGrid, SubItemImages, TransparentBkgnd, TransparentShadow

TBScript specific: filliconbg, filliconselbg, fillsubitemiconbg, fillsubitemiconselbg

If the style is not specified, Icon is used. The style can be changed after creating the control by using the
GUISetText subroutine.

Note: In addition to the newline character (^n), a vertical bar (|) can be used as the separator for the GUI based
subroutines if enabled with the GUIVertBarSep subroutine.

Example:
sub main()
 …
 il="{16~small}iconstrip.bmp^ncustom.ico"
 list=GUIList(dialog,10,10,200,150,"","{99<}ColA^n{95r}ColB",il,"details","SubItemImages")
 GUIInsertItem(list, "Item1 A|Item1 B", 1, "1^n5")
 …
 // list using 4 states
 GUIVertBarSep(1)
 il="{state}iconstates4.png" // strip of 4 images
 stlist=GUIList(dialog,10,10,200,150,"","",il,"list","checkboxes","singlesel")
 GUIInsertItem(stlist, "Item A", 1)
 GUIInsertItem(stlist, "Item B", 2)
 GUISetValue(stlist, "1", "state=3") // set item ID 1 to state 3
 GUISetValue(stlist, "2", "state=2") // set item ID 2 to state 2
 …
end sub

GUIMenu Subroutine
Usage: Availability:
GUIMenu(dialog, x, y, menuflag, "menu_items") Version 15 (Windows)

Description:
Displays a popup/context menu in the specified dialog. x and y specify the location of the menu (use -1 for both to
have the program determine the location). menuflag specifies the Windows TrackPopupMenu() flags to use for the
menu (if necessary, refer to https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-
trackpopupmenu for details). The metadata format for the menu items is {item_id_and_options} and precedes the
menu item text. Separate menu items in the string with a newline character (^n) or vertical bar (|), if enabled. The
following options are available:
 _ Separator line (underscore character)

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-trackpopupmenu
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-trackpopupmenu

TBScript Reference Page 22 of 43

 * Default
 + Checked
 () Radio button (left & right parenthesis)
 - Disabled (hyphen character)
 > Start sub-menu
 < Return from sub-menu (previous menu)
 [Right-to-left text (for right-to-left languages)

If no menu item ID is specified, the ID is the position starting at 1 (a return value of 0 from the menu means no
selection was made); for each sub-menu, the starting number is a multiple of the next 100 (e.g., item 1 of a second
menu is 101).

To set a hotkey for the menu item precede the character with & (to use the & character in the menu text use &&).

Several example menus are shown below. For an example showing handling menu events see the GUIGetEvent
subroutine.

Example:
sub main()
 …
 GUIVertBarSep(1)
 // simple menu with position set, separator and checked item
 GUIMenu(dialog, 25, 100, 0, "Item &A|Item &B|{_}|{+}&Checked item")
 // ID values set, simple sub-menu
 GUIMenu(dialog, -1, -1, 0, "{10}Item A|{>}Sub-menu|{12}Sub-menu item")
 // shows default, radiobutton, checked, and disabled items
 GUIMenu(dialog, -1, -1, 0, "{*}Default|{()+}Radiobutton|{+}Checked|{-}Disabled")
 // more complicated example using multiple options (should all be on one line)
 GUIMenu(dlg, -1, -1, 0, "{1024}Test Item &1|{>}Test Item &2|
 {*+0x22}On SubMenu 1^ttab|On SubMenu 2|{>}Next|On Next 1|{-}On Next 2|
 {<>}Another submenu|Item 1|{<}|{<}Test Item &3")
 …
end sub

GUIPos Subroutine
Usage: Availability:
p = GUIPos(dialog_or_control) Version 15 (Windows)
GUIPos(dialog_or_control, new_x [, new_y [, new_width [, new_height]]])

Description:
When specifying just the dialog or control the current position and size is returned (.x, .y, .width, .height).
Otherwise, specify the new position and size to move or resize the dialog or control.

Example:
sub main()
 …
 button=GUIButton(dialog, 10, 10, 60, 24, "OK", "default")
 p = GUIPos(button) // get button position and size
 printl("button (X,Y WxH): " # p.x # "," # p.y # " " # p.width # "x" # p.height)
 GUIPos(button, p.x+10, p.y+10) // reposition button
 …
end sub

GUIProgress Subroutine
Usage: Availability:
s = GUIProgress(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:

TBScript Reference Page 23 of 43

Add a progress indicator to a dialog. The GUIProgress variadic (…) parameters are listed below for quick
reference. Additional options, details, and examples can be found in Windows GUI Controls: Styles & Images
Reference.

Marquee, Smooth, SmoothReverse, Vertical

Example:
sub main()
 …
 progress=GUIProgress(dialog, 10, 10, 100, 25, "", "smooth")
 GUISetValue(progress, 32) // set position to 32%
 …
end sub

GUIRadioButton Subroutine
Usage: Availability:
s = GUIRadioButton(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add a radio button to a dialog. The GUIRadioButton variadic (…) parameters are listed below for quick reference.
Additional options, details, and examples can be found in Windows GUI Controls: Styles & Images Reference.

Group

Example:
sub main()
 …
 radio1=GUIRadioButton(dialog, 20, 20, 80, 24, "Radio 1", "group")
 radio2=GUIRadioButton(dialog, 20, 40, 80, 24, "Radio 2")
 …
end sub

GUIRemoveItem Subroutine
Usage: Availability:
GUIRemoveItem(control, identifier) Version 15 (Windows)

Description:
Remove an item from a List, Tree or Combo control. Specifying an identifier of 0 (zero) for a List/Tree control will
remove all items in the control. The identifier for a Combo is the zero-based index.

Example:
sub main()
 …
 GUIRemoveItem(list, 2)
 …
end sub

GUISetFocus Subroutine
Usage: Availability:
GUISetFocus(dialog_or_control) Version 15 (Windows)

Description:
Sets the keyboard focus to the specified dialog or control.

Example:
sub main()
 …

TBScript Reference Page 24 of 43

 button=GUIButton(dialog, 10, 10, 60, 24, "Start")
 GUISetFocus(button)
 …
end sub

GUISetText Subroutine
Usage: Availability:
GUISetText(dialog_or_control, text) Version 15 (Windows)

Description:
Set the text for a dialog or control that supports text. To set the date and time for a DateTime control the format
used is “YYYY-MM-DD hh:mm:ss” (when only needing to set the time you must still include a valid date). To set the
view style for a List control you can specify one of the following: icon, smallicon, list, details.

Example:
sub main()
 …
 // set text for an Input control
 GUISetText(input, "New Text")
 // set view style for List control
 GUISetText(mylist, "details")
 …
end sub

GUISetValue Subroutine
Usage: Availability:
GUISetValue(control, value, …) Version 15 (Windows)

Description:
Set the value of a control. The value depends on the control type as follows:

 DateTime: FILETIME value (64-bit number)
 Input: Max characters allowed.
 Checkbox: -1=Indeterminate, 0=Not Checked, 1=Checked
 RadioButton: -1=Indeterminate, 0=Not Checked, 1=Checked
 Progress: Value (0-100)
 Combo: The index of the currently selected item or -1 if custom data entered.
 List /Tree: List of identifiers separated by a newline (^n) character or vertical bar (|), if enabled, to set the

state of the items.

For the List/Tree state to change is controlled by the variadic (…) parameters:

 “Reset” – Reset the state of all items to opposite of the state to set/clear.
 “Check” – Check item(s).
 “Unchecked” – Uncheck item(s).
 “State=n” – Where n is the desired state value. The range of n depends on how many states were

configured (max. 15). The “Reset” parameter is not supported when setting states. You will
need to set each item’s state to an appropriate value.

 “Select” – Select item(s).
 “Unselect” – Unselect item(s).
 “Focus” – Set focus to item within the control.

Example:
sub main()
 …
 GUISetValue(list, "1^n2", "Check", "Reset")
 GUISetValue(checkbox, 1)

TBScript Reference Page 25 of 43

 …
 GUISetValue(statelist, "1^n3^n5", "state=3")
 GUISetValue(statelist, "2^n4", "state=1")
 …
end sub

GUIShow Subroutine
Usage: Availability:
GUIEnable(dialog_or_control, value) Version 15 (Windows)

Description:
Sets the show state of the specified dialog or control. value can be any of the SW_ values from the Win32
ShowWindow() function. Note that some states may not be applicable.

 0 – SW_HIDE 6 – SW_MINIMIZE
 1 – SW_NORMAL 7 – SW_SHOWMINNOACTIVE
 2 – SW_SHOWMINIMIZED 8 – SW_SHOWNA
 3 – SW_MAXIMIZE 9 – SW_RESTORE
 4 – SW_SHOWNOACTIVATE 10 – SW_SHOWDEFAULT
 5 – SW_SHOW 11 – SW_FORCEMINIMIZE

Example:
sub main()
 …
 button=GUIButton(dialog, 10, 10, 60, 24, "OK", "default")
 GUIShow(button, 0) // hide button
 …
end sub

GUIStatic Subroutine
Usage: Availability:
s = GUIStatic(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add text or an image to a dialog box. When “Image” is provided the title is the image file to load. The GUIStatic
variadic (…) parameters are listed below for quick reference. Additional options, details, and examples can be
found in Windows GUI Controls: Styles & Images Reference.

WhiteFrame, WhiteRect, BlackFrame, BlackRect, GrayFrame, GrayRect, Center, Right, RightJust, Simple, Sunken, WordEllipsis,
EndEllipsis, PathEllipsis, NoPrefix, NoWrap, Etched, EtchedHor, EtchedVert, EMF, SizeToControl, SizeToImage, CenterImage, Image

Example:
sub main()
 …
 static1 = GUIStatic(dialog, 10, 10, 100, 40, "myimage.bmp", "image")
 static2 = GUIStatic(dialog, 10, 60, 100, 40, "My Image", "fontsize=15")
 …
end sub

GUITimeDate Subroutine
Usage: Availability:
s = GUITimeDate(dialog, x, y, width, height, title, …) Version 15 (Windows)

Description:
Add a date and time picker to a dialog. The GUITimeDate variadic (…) parameters are listed below for quick
reference. Additional options, details, and examples can be found in Windows GUI Controls: Styles & Images
Reference.

TBScript Reference Page 26 of 43

LongDate, ShortDate, ShortDate4, ShowNone, Time, RightAlign, UpDown, TimeDate, ShortTime

Example:
sub main()
 …
 date=GUITimeDate(dialog, 10, 10, 120, 24, "")
 …
end sub

GUITree Subroutine
Usage: Availability:
s = GUITree(dialog, x, y, width, height, title, images, …) Version 15 (Windows)

Description:
Add a tree control to a dialog. The images follow the format of the ImageList found in Windows GUI Controls:
Styles & Images Reference. The GUITree variadic (…) parameters are listed below for quick reference. Additional
options, details, and examples can be found in Windows GUI Controls: Styles & Images Reference.

Buttons, Lines, CheckBoxes, Edit, FullRow, LinesAtRoot, RToL, AlwaysSel, SelExpand

Example:
sub main()
 …
 GUIVertBarSep(1)
 il="{16}icon0.ico|icon1.ico|icon2.ico"
 tree=GUITree(dialog, 10, 10, 300, 200, "", li, "buttons", "checkboxes")
 GUIInsertItem(tree, "Root Item", 1, 0)
 GUIInsertItem(tree, "Root Child", 2, 1, 0, 1)
 …
end sub

GUIVertBarSep Subroutine
Usage: Availability:
GUIVertBarSep(true_false) Version 15 (Windows)

Description:
Enable or disable the ability to use the vertical bar (|) as the separator for the GUI based subroutines in addition to
the newline character (^n).

Example:
sub main()
 …
 GUIVertBarSep(1)
 …
end sub

HEX Subroutine
Usage:
s = HEX(n)

Description:
The HEX subroutine returns a string hexadecimal representation of the number n.

Example:
sub main()
 // Print F

TBScript Reference Page 27 of 43

 printl(HEX(15))
end sub

IF..THEN..ELSEIF..ELSE..END IF Keywords
Usage:
IF expression THEN
 statements
[ELSEIF expression2 THEN]
 statements
[ELSE]
 statements
END IF

Description:
Use the IF keyword to execute a block of statements only if a condition is true.

Optionally, you can also specify additional blocks that are executed only if the previous conditions are false and a
new condition is true (ELSEIF), or that are executed only if all other blocks are false (ELSE).

Example:
sub main()
 a = 10
 b = 0
 c = 0

 if a > 5 then
 printl("a > 5")
 elseif b > 5 then
 printl("b > 5")
 elseif c > 5 then
 printl("c > 5")
 else
 printl("a, b, and c < 5")
 end if
 // note the following difference due to b being numeric variable
 if b="X" then
 print("b = 0")
 end if

 if "X"=b then
 print("X = b")
 end if
end sub

INCLUDE Keyword
Usage:
INCLUDE “filename”

Description:
Use this keyword to reference another file in your script. The include keyword was added in TBSVER 7 and must
be used outside of any subroutines.

Example:
include "my_common_subroutines.inc" // includes my_sqrt subroutine

sub main()

TBScript Reference Page 28 of 43

 printl("The square root of 81 is ", my_sqrt(81))
end sub

INSTR Subroutine
Usage:
n = INSTR(s1, s2 [, codepage])

Description:
Use INSTR to find a substring within a string. “codepage”, added in version 10, can be a specific code page or 0
for current output code page (only accurate in Windows version).

INSTR returns the 1-based index of the start of s2 within s1. For example, INSTR(“find”, “in”) returns 2. INSTR
returns 0 if the substring was not found.

NOTE: The comparison is case sensitive, which means that INSTR(“find”, “IN”) returns 0.

ISDRIVE Subroutine
Usage:
n = ISDRIVE(s)

Description:
ISDRIVE returns 1 if the drive indicated by s is a valid disk drive. Otherwise, 0 is returned. Only the first character in
s is examined so strings like “c”, “C:”, and “c:\temp” all produce the same result.

NOTE: If the specified drive is an existing drive but is not ready (for example, if a floppy drive has no disk in it),
ISDRIVE returns 0.

Example:
sub main()
 for i = 1 to 26
 s = chr(asc("@") + i)
 if isdrive(s) then
 printl("Drive ", s, ":")
 end if
 next
end sub

TBScript Reference Page 29 of 43

ISSTRTYPE Subroutine
Usage:
n = ISSTRTYPE(s, t)

Description:
ISSTRTYPE returns 1 if the string type matches the type (t) requested. Use 0 for integer check, 1 for decimal, 2 for
alphabetic, 3 for alpha-numeric.

Example:
sub main()
 s[1] = "1234"
 s[2] = "23.4"
 s[3] = "abc"
 s[4] = "123abc"

 for i = 1 to 4
 printl("String ^"", s[i],"^"")
 printl(" IsInt: ", IsStrType(s[i],0)
 printl(" IsDec: ", IsStrType(s[i],1)
 printl(" IsAlpha: ", IsStrType(s[i],2)
 printl(" IsAlphaNum: ", IsStrType(s[i],3)
 printl("")
 next
end sub

LCASE Subroutine
Usage:
s = LCASE(s)

Description:
Returns a lower case version of a string.

LEFT Subroutine
Usage:
s = LEFT(s, n [, codepage])

Description:
Returns a string with the left-most characters of s. The number of characters to return is indicated by n. If n is
greater than or equal to the length of the string, then the entire string is returned. For example, LEFT(“Test”, 2)
returns “Te”. “codepage”, added in version 10, can be a specific code page or 0 for current output code page (only
accurate in Windows version).

LEN Subroutine
Usage:
n = LEN(s [, codepage])

Description:
Returns the number of characters in a string. “codepage”, added in version 10, can be a specific code page or 0 for
current output code page (only accurate in Windows version).

TBScript Reference Page 30 of 43

LOF Subroutine
Usage:
n = LOF(n)

Description:
Returns the length of an open file. n is a number returned by OPEN.

MID Subroutine
Usage:
s = MID(s, pos [, len [, codepage]])

Description:
Returns a substring of a string. pos specifies the 1-based index of the start of the substring. len specifies the
number of characters to return. If len is omitted, the rest of the string is returned. “codepage”, added in version 10,
can be a specific code page or 0 for current output code page (only accurate in Windows version).

For example, MID(“Test string”, 6, 3) returns “str”, and MID(“Test string”, 6) returns “string”.

MKDIR Subroutine
Usage:
r=MKDIR(path)

Description:
Creates a new directory. This subroutine returns zero on success or a non-zero failure code.

OCT Subroutine
Usage:
s = OCT(n)

Description:
The OCT subroutine returns a string octal representation of the number n.

Example:
sub main()
 // Print 17
 printl(OCT(15))
end sub

(The remainder of this page has been intentionally left blank)

TBScript Reference Page 31 of 43

OPEN, CLOSE Subroutines
Usage:
n = OPEN(name [,"in" | "in-out" | "in-out-trunc" | "uin" | "uin-out" | "uin-out-trunc" [, “binary”]])
CLOSE(n)

Description:
The OPEN and CLOSE subroutines are used to open a file for access and then close it. The optional open
methods specify how the file should be opened. The "in" option opens an existing file as read-only; "in-out"
(default) opens or creates a file that can be read or written; "in-out-trunc" will truncate an existing file to zero or
create a new file that can be read or written. The "uin" variety of open methods in non-binary mode will look for a
Unicode BOM at the beginning of the file and automatically translate the data as needed. The optional “binary”
parameter is available in TBSVER 2 or later and treats the data to read/write as binary data (not text strings).
Starting in TBSVER 11 sharing options -denynone, -denyall, -denyread, -denywrite can be appended to the
methods. The sharing options only take effect in Windows, DOS and any environment under a TBOSDT directly
mounted drive (0: - 9:). Example: “uin-out-denywrite”

Opened files that are not read-only can be written to using WRITEL, and all files can be read from using READL.
The current version only supports reading and writing lines of text.

This subroutine returns -1 if there was a problem opening the file and sets member .errno containing a failure code.

Note: Although the script interpreter will make sure that all opened files are closed eventually, you should explicitly
close any files you open. This will prevent you from running out of file handles if your script needs to open several
files.

Example:
sub main()
 // Open a file
 f = open("file1.txt", "uin-out")

 // Move to the end of any existing text
 seek(f, lof(f))

 // Write 50 lines of text
 for i = 1 to 50
 s = "This is test line " # i # "!!!"
 writel(f, s)
 next

 // Write one blank line
 writel(f)

 // Close file
 close(f)
end sub

PAD Subroutine
Usage:
s = PAD(s, n [,0|1|2 [, codepage]])

Description:
Returns a string that contains at least n characters. When the input string is less than n characters it can be justified
left (default) (0), middle (1), or right (2) by providing a third parameter. If the input string length is greater than or
equal to n then the input string is simply returned. “codepage”, added in version 10, can be a specific code page or
0 for current output code page (only accurate in Windows version).

sub main()
 // Print [test]

TBScript Reference Page 32 of 43

 printl("[", PAD("test", 10, 1), "]")
end sub

PRINT, PRINTL Subroutines
Usage:
PRINT(s [, …])
PRINTL(s [, …])

Description:
Use these subroutines to print text to the screen. The difference between PRINT and PRINTL is that PRINTL prints
a new line after all text (it moves the text cursor to the start of the next line).

Both subroutines take any number and type of arguments.

Example:
sub main()
 a = 5
 b = "Test"
 c = 52.9
 printl("a = ", a, ", b = ", b, ", c = ", c)
end sub

RAND Subroutine
Usage:
r = RAND([seed])

Description:
Returns a pseudo-random number from 0 to 32767. You can optionally provide a seed to generate a new
sequence. The pseudo-random numbers generated are NOT cryptographically strong.

READL Subroutine
Usage:
s = READL(n [,size])

Description:
Reads a line of text (or data) from an open file. n must be a value returned by the OPEN subroutine. The optional
size value is available in TBSVER 2 or later and limits or expands the amount of data read. The default size is 512,
prior to TBSVER 17 the default size was 128. On failure this subroutine returns an empty string and sets member
errno containing the failure code to differentiate from a blank line being read. In text mode, a CRLF is converted to
a newline character and returned with the string.

RENAME Subroutine
Usage:
s = RENAME(oldname, newname)

Description:
Renames a file. This subroutine returns zero on success or a non-zero failure code.

RETURN Keyword
Usage:
RETURN [v]

Description:
Use the RETURN keyword to exit the current subroutine and return to the subroutine that called it. A RETURN
statement has the same effect as encountering an END SUB.

TBScript Reference Page 33 of 43

If an expression is included after the RETURN keyword, the value of that expression is returned to the calling
subroutine. If a value is returned from the MAIN subroutine, that value sets the script return code (errorlevel).

RIGHT Subroutine
Usage:
s = RIGHT(s, n [,codepage])

Description:
Returns a string with the right-most characters of s. The number of characters to return is indicated by n. If n is
greater than or equal to the length of the string, then the entire string is returned. For example, RIGHT(“Test”, 2)
returns “st”. “codepage”, added in version 10, can be a specific code page or 0 for current output code page (only
accurate in Windows version).

RMDIR Subroutine
Usage:
r=RMDIR(path)

Description:
Removes an empty directory. This subroutine returns zero on success or a non-zero failure code.

RMFILE Subroutine
Usage:
r=RMFILE(filepath)

Description:
Deletes a file. This subroutine returns zero on success or a non-zero failure code.

SEEK Subroutine
Usage:
SEEK(n, offset)

Description:
Jumps to a position within an open file. So that the new position will be used for reading or writing. n is the value
returned by OPEN. offset is the location to jump to.

NOTE: Be aware that the file routines translate newline characters to carriage return, line feeds pairs. This means
that an offset may not work as expected under some circumstances. SEEK is mostly useful for doing things like
moving to the beginning or end of a file.

SETATTR Subroutine
Usage:
r=SETATTR(filepath, attribute)

Description:
Changes the attributes of a file to match attribute. This subroutine returns non-zero on success or zero on failure.

SETCP Subroutine
Usage: Availability:
r=SETCP(whichcp, cpvalue) Version 10

Description:
Changes the code page for a given item. The values for whichcp are: 0=Get Code Page, 1=Console Code Page,
2=Conversion Code Page. When whichcp is zero the cpvalue indicates which code page to return, either 1

TBScript Reference Page 34 of 43

(console) or 2 (conversion). The console values are only accurate under Windows. It’s not recommended to
change the conversion code page to a value other than 65001 (UTF8) or -1 (Auto Determine) or problems can arise
from foreign characters.

SETDRIVE Subroutine
Usage:
r=SETDRIVE(drvltr)

Description:
Changes the current drive to drvltr. Only the first character is used so "A:" is the same as "A" or "Apple". This
subroutine returns zero (FALSE) on error or non-zero (TRUE) on success.

SETENV Subroutine
Usage:
SETENV(env, val)

Description:
Use SETENV to set an environment variable. If the environment variable already exists, the existing variable is
modified. Otherwise, it is created.

Example:
sub main()
 setenv("path", "C:\")
 printl(getenv("path")
end sub

SETLOCALE Subroutine
Usage:
SETLOCALE(locale)

Description:
Use this subroutine to set the current locale. This setting affects the format of date and time strings created by other
subroutines. Note that even with locale set, decimal numbers will continue to accept use of ‘.’.

The locale argument may be any of the following values:

0 Date and time strings will be created using the default format. Locale set to default (Ver 10+).
1 Default date and time strings will be created using the ISO 8601 format.
2 Default date and time without zero prefix (Ver 10+).
3 Default time removing space between time and AM/PM (Ver 10+).
4 Default time to use lower case AM/PM (Ver 10+).
5 Locale pulled in from environment (not related to date/time strings) (Ver 10+).
6 Use OS locale for Date/Time (Ver 10+).

SETUEFIVAR Subroutine
Usage:
r =UEFISETVAR(varname, namespaceguid[, bindata, attributes])

Description:
Set a UEFI firmware variable (variable names are case sensitive). This subroutine is only available when the
system booted using UEFI. In linux, the efivarfs must be mounted at /sys/firmware/efi/efivars. The linux command
to mount is: mount -t efivarfs none /sys/firmware/efi/efivars. When bindata is not provided the variable is deleted.
The return value is zero on success otherwise an error code is returned.

TBScript Reference Page 35 of 43

 WARNING: This function does not prevent you from deleting variables or setting invalid data. Using
invalid data or deleing the wrong variables can prevent your system from booting until the firmware is
reset to factory defaults. Contact the system manufacturer for instructions on resetting factory defaults.

Example:
const UEFI_VAR_NV = 1
const UEFI_VAR_BS = 2
const UEFI_VAR_RT = 4

sub main()
 a = UEFI_VAR_NV+UEFI_VAR_BS+UEFI_VAR_RT // attributes
 t = binary(2, 3, 0, 2) // 16-bit value for number 2
 e = setuefivar("Timeout","{8BE4DF61-93CA-11D2-AA0D-00E098032B8C}", t, a)
 if (e = 0) then
 printl("Boot Timeout Set to", binary(t, 3))
 else
 printl("Unable to set Boot Timeout. Error:", e)
 end if
end sub

SLEEP Subroutine
Usage:
SLEEP(seconds | -milliseconds)

Description:
Use the SLEEP subroutine to pause for the specified number of seconds. SLEEP returns after the specified
number of seconds has passed. Starting in version 15 you can use a negative value to delay in milliseconds.

SUB..END SUB Keywords
Usage:
SUB subname
END SUB

Description:
Defines a subroutine with the given name.

Example:
sub main()
 printl("In main()")
 test1()
 printl("In main()")
end sub

sub test1()
 printl("In test1()”)
 test2()
 printl("In test1()")
end sub

sub test2()
 printl("In test2()”)
end sub

TXASCII Subroutine
Usage:

TBScript Reference Page 36 of 43

TXASCII(0|1)

Description:
Enables output of ASCII characters under Windows.

TXCURSORTYPE Subroutine
Usage:
TXCURSORTYPE(0|1|2)

Description:
Sets the shape of the text cursor. 0=None, 1=Block, 2=Underline.

TXGETBLOCK Subroutine
Usage:
b = TXGETBLOCK(x1, y1, x2, y2)

Description:
Returns a reference to a saved area of the text console. The variable value returns 0 or 1 to indicate failure or
success.

TXGETINFO Subroutine
Usage:
ti = TXGETINFO()

Description:
Returns information about the current text console. The variable contains the following members:
 ViewLeft – X location of the current screen view. 1 = left most position.

ViewTop – Y location of the current screen view. 1 = top most position.
ViewWidth – Width of the current screen view.
ViewHeight – Height of the current screen view.
Width – Width of the entire available text console.
Height – Height of the entire available text console.
Attr – Current text attribute.
CurMode – Current text mode.

TXGOTOXY Subroutine
Usage:
TXGOTOXY(x,y)

Description:
Moves the text cursor to the coordinates x and y. (1,1) is the upper-left most position.

TXINITSubroutine
Usage:
TXINIT()

Description:
Initialize TBScript to use the various text mode subroutines. This must be called at least once before calling any of
the other TX based subroutines.

Once this mode is enabled there are some differences that you should note:
 1 – GetStr will not output a newline after input (expect under Windows). You must manually do it.
 2 – Using a newline (^n) character for output will not include the carriage return under DOS.
 3 – Outputting a newline under Linux will clear (using current color) text to the end of the current line.

TBScript Reference Page 37 of 43

If these differences are problematic then you'll need to design your own GetStr type subroutine using GetKey().
You can use the TBSENV variable to determine the environment the script is running in.

TXMODE Subroutine
Usage:
TXMODE (m)

Description:
Sets the video text mode. Setting the video mode is only relevant when used in the DOS environment. 0=Black
and White 40 columns, 1=Color 40 columns, 2=Black and White 80 columns, 3=Color 80 columns, 7=Monochrome
80 columns, 64=EGA/VGA 43/50 lines.

TXOUTCH Subroutine
Usage:
TXOUTCH(c [,repeat])

Description:
Outputs a character to the current cursor location and optionally repeats it.

TXPUTBLOCK Subroutine
Usage:
r = TXPUTBLOCK(b [,x [,y]])

Description:
Write a blocked of saved text back to the console. If x or y are provided the text is placed at those coordinates
otherwise the original location is used. The returned value indicates 0 or 1 to indicate failure or success. The block
(b) stays allocated until cleared by assigning another value to it (e.g. b="")

TXSETATTR Subroutine
Usage:
TXSETATTR (attribute)

Description:
Sets the current text attribute to use on the next TX output subroutine. It's common to use a hexadecimal number
when specifying attributes due to the clarity it provides. For example, white text on a blue background would be
specified as 0x1F (1 being blue and F (15) being white).

Text Attribute 8-Bit Encoding
Bits Usage
0-3 foreground color (0 to 15)
4-6 background color (0 to 7)
7 blink-enable bit

Standard Colors
Value Description

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light Gray
8 Dark Gray
9 Light Blue

10 Light Green
11 Light Cyan

TBScript Reference Page 38 of 43

12 Light Red
13 Light Magenta
14 Yellow
15 White

Example:
sub main()
 txinit()
 txsetattr(0x1F) // set white text on blue background
 printl("This prints in color")
 txterm()
end sub

TXTERM Subroutine
Usage:
TXTERM()

Description:
Terminates the use of the various text console subroutines. This should be called before ending the script if
TXINIT() was used.

TXWHEREX Subroutine
Usage:
x =TXWHEREX ()

Description:
Returns the X location of the text cursor. The left most position is 1.

TXWHEREY Subroutine
Usage:
y=TXWHEREY(s)

Description:
Returns the Y location of the text cursor. The top most position is 1.

UCASE Subroutine
Usage:
s = UCASE(s)

Description:
Returns an upper case version of a string.

UNSET Keyword
Usage:
UNSET v

Description:
Use to clear a variable. Usage is recommended to clear GUI dialog and control variables when no longer needed.

WHILE..WEND Keywords
Usage:
WHILE expression
 statements
WEND

TBScript Reference Page 39 of 43

Description:
Use a WHILE loop to execute a block of statements as long as an expression is true.

Example:
sub main()
 a = 1
 while a <= 25
 printl("This is test line ", a)
 a = a + 1
 wend
end sub

WinGetMonitors Subroutine
Usage: Availability:
info = WinGetMonitors() Version 15 (Windows)

Description:
Get the Windows screen and monitor information. The return value is set to the number of monitors found and
contains the following members:
 .x0 - virtual screen left most
 .x1 - virtual screen right most
 .y0 - virtual screen top most
 .y1 - virtual screen bottom most
 .monitor[] – 1 based array of monitors
 .x0 - virtual left of monitor
 .x1 - virtual right of monitor
 .y0 - virtual top of monitor
 .y1 - virtual bottom of monitor
 .flags - monitor flags from DISPLAY_DEVICES.StateFlags
 .name - monitor name

Example:
sub main()
 m=WinGetMonitors()
 printl("virtual screen=" # m.x0 # "," # m.y0 # "," # m.x1 # "," # m.y1)
 for i=1 to m
 // split for this example not to wrap
 print("monitor " # i # "=" # m.monitor[i].x0 # "," # m.monitor[i].y0)
 printl("," # m.monitor[i].x1 # "," # m.monitor[i].y1)
 next
 m=0
end sub

WRITEL Subroutine
Usage:
WRITEL(n [, s [,new_line_type]])

Description:
Writes a line of text or binary data to an open file. n is the value returned by OPEN. s is the line of text or binary
data to write to the file. When the file is opened in text mode a CRLF will be appended to the line of text written.
Added in version 17, the new_line_type controls the type of new line appended. By default, a CRLF combination
will be used, when new_line_type is 1, a single newline character will be used and when 0, no newline will be
added. Stream implementations of this function will use the standard C handling of new lines; for full and consistent
control, use binary mode. This subroutine returns zero on success or a non-zero failure code.

TBScript Reference Page 40 of 43

Windows GUI Controls: Styles & Images Reference

This section provides a reference for the supported styles, images, and imagelists that can be used with the
Windows GUI controls created using TBScript.

Available styles are a sub-set of the standard Windows control styles. Certain styles and style combinations may
not be supported by a specific control as determined by Windows. If necessary, more details on Windows controls
and their styles can be found on Microsoft’s site. Options listed below indicate whether specific to standard
Windows control styles (names may differ) or TBScript.

The following options are available for Windows GUI controls and dialogs:

Font Control

TBScript: FontSize=point_size, Font=font_name, Bold, Italics, Strikeout, Underline

In general, when specifying a font you should also specify the size or it may not take effect. For dialogs, the
“Strikeout” and “Underline” options are not supported.

Example:
s = GUIStatic(dlg, 10, 10, 60, 16, "my text", "font=calibri", "fontsize=10", "bold")

Ex Styles
Windows: StaticEdge, ClientEdge, WindowEdge

Colors

TBScript: BGColor=rgb, FGColor=rgb

List / View Controls Only: BGColorSel=rgb, FGColorSel=rgb, BGColorKeepSel=rgb, FGColorKeepSel=rgb

rgb in hex format (0xFF0000=Red, 0x00FF00=Green, 0x0000FF=Blue). For some controls you may need to
specify both the background and foreground colors to have them show (e.g., foreground color may not show if
background not also specified).

For list and tree controls you can specify the background and foreground colors to use for the selected item
as well as for the keep selected state (selected state shown when control doesn’t have focus).

Example:
s = GUIStatic(dlg, 10, 10, 60, 16, "my text", "BGColor=0xCCDDFF", "FGColor=0xFF0000")

The following options are available for the Windows GUI dialogs:

Dialog Created using: GUIDialog()

TBScript: Align-Center

The following options are available for the various Windows GUI controls:

Button Button control Created using: GUIButton()

Windows: Default, CmdLink, DefCmdLink, Split, DefSplit, Flat, Multiline, Push, TxLeft, TxCenter, TxRight,
TxBottom, TxTop, TxVCenter, Right, Image

TBScript: SetImage={metadata}image_file, SetImageList={metadata}image_files

See below for details on specifying images for buttons.

https://docs.microsoft.com/en-us/windows/win32/controls/individual-control-info

TBScript Reference Page 41 of 43

Static Static control Created using: GUIStatic()

Windows: WhiteFrame, WhiteRect, BlackFrame, BlackRect, GrayFrame, GrayRect, Center, Right, RightJust,
Simple, Sunken, WordEllipsis, EndEllipsis, PathEllipsis, NoPrefix, NoWrap, Etched, EtchedHor, EtchedVert,
EMF, SizeToControl, SizeToImage, CenterImage, Image

Input Edit control Created using: GUIInput()

Windows: ReadOnly, Password, Multiline, Lower, Upper, Number, TxLeft, TxCenter, TxRight

TimeDate Date and Time Picker control Created using: GUITimeDate()

Windows: LongDate, ShortDate, ShortDate4, ShowNone, Time, RightAlign, UpDown, TimeDate, ShortTime

CheckBox CheckBox control Created using: GUICheckBox()

Windows: 3State

RadioButton RadioButton control Created using: GUIRadioButton()

Windows: Group

Progress Progress Bar control Created using: GUIProgress()

Windows: Marquee, Smooth, SmoothReverse, Vertical

Combo ComboBox control Created using: GUICombo()

Windows: Simple, Sort, Upper, Lower, Dropdown, DropdownList

List List View control Created using: GUIList()

Windows (List View Styles): Icon, SmallIcon, List, Details (Icon style is used if no style specified.)

Windows: Left, Top, AutoArrange, Sort, SortRev, SingleSel, KeepSel, NoSortHeader, NoHeader,
AutoAutoArrange, AutoCheckSelect, AutoSizeColumns, BorderSelect, CheckBoxes, ColumnSnapPoints,
DoubleBuffer, FlatSB, FullRowSelect, GridLines, HideLabels, LabelTip, SimpleSelect, SnapToGrid,
SubItemImages, TransparentBkgnd, TransparentShadow

TBScript: The following options only apply to the “Details” style and fill the area around the icons to match the
background color:
 filliconbg - fills in icon area for unselected items (main items, column 0)
 filliconselbg - fills in icon area for selected items (main items, column 0)
 fillsubitemiconbg - fills in icon area for unselected sub-items
 fillsubitemiconselbg - fills in icon area for selected sub-items

Tree Tree View control Created using: GUITree()

Windows: Buttons, Lines, CheckBoxes, Edit, FullRow, LinesAtRoot, RToL, AlwaysSel, SelExpand

ImageList Additional options available for controls using an ImageList (e.g., List, Tree)

Windows: Mask, ColorDDB, Color8, Color16, Color24, Color32

Default if none specified is Color32.

Supported Image File Types

The following image file types are supported: .ICO, .BMP, .PNG, .JPG, .GIF

TBScript Reference Page 42 of 43

When specifying an image file, both relative and absolute paths are supported.

List/Tree Controls: Metadata and Image Format for ImageLists

The metadata and image format for ImageList based controls (List/Tree) are provided at the start of each image list
with no preceding whitespace. The metadata is placed in between {curly brackets} as follows: [size][~][which].
Either size or which must be provided. The which value for a List can be: small, normal or state and for a Tree:
normal or state and correspond to the following:
 small - Icons used for List control list, details, and smallicon view styles.
 normal - Icons used for Tree control and List control icon view style.
 state - Icons used for checked/unchecked states (index 0=unchecked, 1=checked) or for custom multiple

states. The control must use the “checkboxes” parameter. The number of images in the state
imagelist determines the number of states (max. 15). The state value will increment when clicked,
returning to 1 after max is reached. For example, if you wish to display custom images for
unchecked and checked states the state imagelist should have only two images.

The ~ character can be provided to indicate loading of a .bmp should change colors matching the lower-left pixel to
match the system Window color (.bmp must be 8-bit or less). If no which is provided the default is normal. The
default icon size is 16 for state/small and 32 for normal. For .dll and .exe files you must specify the 0-based icon
indexes to use. Separate files and indexes with the newline character (^n) or the vertical bar (|), if enabled. If the
same which value is specified multiple times (including defaults) in the list, only the last one will be used.

If you need to specify a mask for the icons you can provide the mask file just prior to the graphic file, separated with
the newline character (^n) or the vertical bar (|), if enabled. The mask file must be a black & white .bmp file
renamed with a .bmm extension (black indicates visible area). If less images exist in mask image than graphic file,
the additional images will not be masked. Note that any transparency in the graphic file (such as in a PNG) will be
removed when a mask is used.

List Examples:
// small imagelist from strip
"{small}c:\path\iconstrip.bmp"

// normal and small imagelists from multiple sources
"{32 normal}iconfile1.ico|iconresource.dll|15|{16~small}iconstrip.bmp"

// small imagelist and state icons from strips
"{small}iconstrip.png|{state}checkuncheck.png"

// small imagelist using mask file with .bmp strip
"{small}iconstripmask.bmm|iconstrip.bmp"

// using larger icons for both small and normal/icon view styles
"{32 small}iconstrip32.png|{64 normal}iconstrip64.png"

Tree Examples:
// imagelist from strip
"{16}iconstrip.bmp"

// imagelist from multiple files
"{16}treestrip.png|treestrip2.png"

// normal size icons pulled from .exe file using indexes 0,1,2,5
"{normal}iconresource.exe|0|1|2|5"

// size 16 imagelist and state icons from strips
"{16}iconstrip.png|{state}iconstate.png"

Static and Single Image Button Controls: Metadata and Image Format

The metadata and image format for a Static control or a single image Button control requires a single image to be
provided. Specify the size in metadata, if necessary (image will be resized square).

TBScript Reference Page 43 of 43

Static/Button (single image) Examples:
"SetImage=c:\path\image.bmp"
"SetImage={16}icon.ico"

Multi-image Button Control: Metadata and Image Format for ImageList

The metadata and image format for a multi-image Button control uses the SetImageList={metadata}image_files
format and requires an image for each button state. The metadata is placed between {curly brackets} as follows:
size [align]. The size value is the size of the image and must be specified (images should be square). The align
value is optional and specifies the alignment to use and must be one of the following (default is center): left, right,
top, bottom. Note that if center alignment is used and button text is included and uses text center alignment
(default) that the image and text will overlap.

If an image strip is specified it should contain images for all six button states. If a single image is specified it will be
used for all states. If multiple images are specified and an image for a state isn’t provided no image will be shown in
that state. You can specify the same image for multiple states (for example, you may specify different images for
hot and disabled and use the normal image for the other four states). Separate the image files with the newline
character (^n) or the vertical bar (|), if enabled. The six button states are as follows and must be specified in this
order:
 NORMAL
 HOT (hover over)
 PRESSED
 DISABLED
 DEFAULTED (has keyboard focus)
 STYLUSHOT

Button (multi-image, using imagelist) Examples:
// different image for each state, left alignment
"SetImageList={16 left}normal.png|hot.png|pressed.png|disabled.png|defaulted.png|stylushot.png"

// using only normal, hot, disabled, right alignment
"SetImageList={16 right}button.png|buttonhot.png|button.png|buttondisabled.png|button.png|button.png"

// using single 32 size image for all states, center alignment
"SetImageList={32}start.png"

// using size 32 strip containing images for all button states, center alignment
"SetImageList={32}buttonstates.png"

